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Abstract—Natural convection in the vicinity of a small protrusion embedded in the boundary layer on a

vertical flat plate is considered. Protrusions of height ~ Le*” and length ~ Le®7, where & = Gr= "%, are

analyzed in the context of double-deck theory. The lower deck equations are solved numerically by a

hybrid spectral finite difference method. The heat transfer rates are determined for two thermal boundary

conditions. In the first case, the protrusion is maintained at the same temperature as the plate, while in the

second case, the protrusion is held at a temperature higher than the plate temperature. The effect of
boundary layer separation on the heat transfer rate is investigated,

1. INTRODUCTION

THIS PAPER is concerned with heat transfer in the
vicinity of a small protrusion embedded inside a jet-
like boundary layer on a flat plate. This is a model to
study the cooling of electronic chips, and also to study
the details of flow and heat transfer near a single
roughness element on an otherwise smooth plate. The
presence of a protrusion can produce significant local
changes in the flow along a flat plate and alter the
heat transfer rates appreciably. If the size of the pro-
trusion is large, boundary layer separation may occur.
The induced mixing due to boundary layer separation
may enhance the rate of heat transfer. The natural
convection boundary layer along a vertical flat plate
has been used as an example of a jet-like boundary
layer flow in this paper. The results can be applied to
other jet-like boundary layer flows over protrusions
where the fluid outside the boundary layer is at rest
or moving much slower than the fluid inside the
boundary layer such as the wall jet produced by a
source of momentum upstream.

The flow over a protrusion embedded in a jet-like
boundary layer on a flat plate may be described by a
double-deck structure [1-4] if the streamwise length
of the protrusionis O (L&%") and its height is O (L&),
where L is the distance from the leading edge of the
plate to the location of the protrusion and ¢ = Re™ 2
or Gr~Y* [5]. Here, Re is the appropriate Reynolds
number for forced flows such as the wall jet, and Gr
is the Grashof number for natural convection. The
double-deck structure follows closely the usual triple-
deck ideas for local boundary layer interactions [6~
9], the difference being that here there is no outer
flow; hence, there is no upper deck. The presence of
the protrusion results in large streamwise accel-
erations and temperature gradients in a small region
around the protrusion, and the flow cannot be

described by the classical boundary layer eguations.
In the outer part of the boundary layer, the viscous
and the conduction terms do not change significantly
from their upstream values, and the perturbed flow
is described by inviscid-flow equations. The inviscid
perturbations do not satisfy the no-slip and wall tem-
perature boundary conditions. Near the wall, there
exists a sublayer or lower deck where the viscous
and conduction terms cannot be neglected. Thus, the
boundary layer is divided into two parts, an outer
layer or main deck, and an inner sublayer or lower
deck. The flow in the lower deck is described by the
boundary layer equations, but with an induced pres-
sure gradient to account for the presence of the pro-
trusion. The pressure outside the boundary layer
being constant, there must exist a transverse pressure
gradient across the main deck to sustain the induced
streamwise pressure gradient in the lower deck. The
double-deck structure provides a consistent descrip-
tion of this viscous-inviscid interaction for a jet-like
boundary layer.

The induced pressure gradient may be adverse in
some regions, and, if large enough, may trigger off
boundary layer separation although there is no exter-
nal free stream. Due to the quasi-elliptic nature of the
double-deck pressure—displacement interaction, the
Goldstein singularity, which appears in the classical
boundary layer equations at separation, does not
occur in the lower deck equations. Thus, small-scale
separated flows may be computed numerically using
the double-deck model.

The present investigation has been restricted to pro-
trusions which fall into the double-deck scale. The
flow over a hump inside a free-convection boundary
layer has been analyzed in the context of double-
deck theory by Merkin [5]. Merkin, however, did not
obtain a solution for the energy equation since tem-
perature perturbations on the double-deck scale do
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NOMENCLATURE
a displacement function Greek symbols
d displacement function in transformed o thermal diffusivity
coordinates B thermal expansivity
f - surface geometry function v = [Un(n)} ds, a constant used in the
g gravitational acceleration double-deck pressure—displacement
Gr  Grashof number relation
h height of protrusion £ =Gr V% used as a small expansion
k thermal conductivity parameter
L length from leading edge of plate to ] transformed transverse coordinate
protrusion e dimensionless temperature
Nu  Nusselt number K =(Ty—TMW(T,—T,), jumpin

P pressure

Pr Prandtl number

Q total heat transfer rate from protrusion
T temperature

T, temperature of surface of protrusion
T, plate temperature

T, ambient temperature

u x-component of velocity

#,  characteristic velocity

v y-component of velocity

w transformed velocity

X axial coordinate

¥ transverse coordinate

z transformed transverse coordinate.

wall temperature for discontinuous
wall temperature boundary

condition

A = U4(0), wall shear stress for the
jet-like boundary layer at
x=40

] =04(0), wall heat flux for the jet-like
boundary layerat x =0

v kinematic viscosity

14 axial coordinate measured from leading
edge of protrusion

P density

T shear stress

w Fourier transform variable.

not affect the leading order velocity field. In this paper,
we demonstrate that although temperature plays a
passive role in the double-deck interaction, the pres-
ence of the protrusion produces significant local
changes in the temperature and heat transfer rates.
The physical model is shown in Fig. 1. We consider
steady, laminar natural convection flow along a ver-
tical plate with a small protrusion embedded within
the lower deck of the double-deck structure. The plate
is assumed to be maintained at a uniform temperature,
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FiG. 1. Physical model and coordinates.

T\, which is higher than the ambient temperature 7°,,.
Two thermal boundary conditions are considered for
the protrusion. In the first case, the surface of the
protrusion is maintained at the same temperature T,
as the plate. In the second case, the surface of the
protrusion is held at a different temperature 7. The
asymptotic structure of the temperature field is differ-
ent for these two cases. To leading order, the flow is
not influenced by temperature perturbations on the
double-deck scale. Thus, the flow structure is the same
for both cases. The double-deck flow is discussed in
Section 2.1. The details of the temperature field for
the uniform wall temperature boundary condition and
the discontinuous wall temperature boundary con-
dition are considered separately in Sections 2.2 and
2.3 respectively.

In Sections 2.1, 2.2 and 2.3, the dependence of the
double-deck structure on the natural convection
boundary layer has been scaled out. The solutions
presented in this paper are valid for any jet-like
boundary layer flow over a hump. Applying these
solutions to other jet-like flows requires a knowledge
of the wall shear stress, 4, at the location of the hump
for the jet-like flow on the plate, the local displacement
effect, 7, of the jet-like flow and the wall heat flux,
i, at the location of the hump for the jet-like flow.
Numerical results for the natural convection bound-
ary layer on a vertical plate are provided in detail as
an example in Section 4.



Natural convection near a small protrusion on a vertical plate

The lower deck equations have been solved numeri-
cally by a hybrid spectral finite difference method.
Details of the numerical method are given in Section
3. Resuits for a natural convection boundary layer
are presented in Section 4 for two Prandtl numbers:
Pr = 0.7 (air) and Pr =8 (water). A quartic hump
has been chosen as a specific example of a protrusion.
Since the protrusions considered in this study are very
small, we do not expect the results to vary significantly
if the shape of the protrusion is changed.

The results indicate that the local wall shear stress
and wall heat transfer rates increase on the windward
side of the protrusion and decrease on the leeward
side for both the uniform wall temperature and dis-
continuous wall temperature boundary conditions.
Results for the total heat transfer rate from the surface
of the protrusion have been obtained for various
hump heights. For the uniform wall temperature
boundary condition, it is found that as the height, 4,
of the protrusion increases, the total heat transfer
rate from its surface increases to a maximum around
h = 1.5 and then decreases. The total heat transfer
rate from the protrusion for the discontinuous wall
temperature boundary condition shows a similar
trend. The results for Pr = 8 (water), however, indi-
cate that for the discontinuous wall temperature
boundary condition, the total heat transfer rate
reaches a local minimum around 4 = 2.25 and then
increases as 4 is increased further. This increase in
heat transfer rate may be attributed to the mixing of
cold fluid with hot fluid induced by the recirculation
of fluid in the separation bubble. Since the current
model is valid only for small-scale separation, the
significance of the heat transfer enhancement due to
the mixing induced by flow separation cannot be fully
elucidated. The results, however, clearly indicate the
trend.

2. ANALYSIS

We consider steady, laminar, two-dimensional free
convection flow along a vertical flat plate with a small
protrusion located at a distance L from its leading
edge (Fig. 1). Cartesian coordinates (%, y) are chosen
such that the %-axis is aligned with the direction of
gravity, and the j-axis is normal to the plate. The
corresponding velocity components are (#,7). The
leading edge is at X = — L, and the plate is at § = 0.
We introduce the following dimensionless variables:

x y .
- - 1

X=7, y=7 (coordinates)  (la)
u 7 .

u=—, v=-— {(velocities) (1b)
Uo 0

p= p_IZCD (pressure) (1c)

PUy

T-7,

0= T.-T. (temperature), (1d)
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where

= J(9BL(T. —T,)) (Ie)

is a reference velocity, g is the gravitational accel-
eration, § is the thermal expansivity, T, is the tem-
perature of the plate, T, is the ambient temperature,
P is the ambient pressure and p is the reference den-
sity.

The equations describing the flow are the conti-
nuity, Navier—Stokes and energy equations. Employ-
ing the Boussinesq approximation, these equations
may be written in dimensionless form as

au v —0 @
ax 6y 2)
ou Ju op

0w u
“oxt Ve Tox (a z+5;2'> (20)

dv dv op .2 v 0%
ua-f'ba—_a‘*’ <6x2+6 (20)
00 06 &2 [8%0 o8%0
“ax”@:ﬁ(era?)’ 2d)
where
e=Gr ¢ (2e)

is the order of the free convection boundary layer
thickness for fluids with Prandtl number of order one,

Gr = gB(T,—T,)L*|v* (2f)
is the Grashof number,
Pr =v/ja 2g)

is the Prandt] number, v is the kinematic viscosity and
o is the thermal diffusivity.

Following Merkin [5], we consider protrusions of
height of O(Le*7) and length of O(Le%"), with pro-
files

y =e&"ThF (x/e®), 3

where the function F is such that AF(X) is of order
one or less for all X = x/¢%’. The protrusion or hump
may then be taken as a O(1) disturbance within the
lower deck of a double-deck structure. The double-
deck flow structure is given in detail in ref. [1] and will
be described only briefly here.

2.1. The double deck

In the main deck or outer layer, the O(1) coordi-
nates are

y=>. (4)
€

The dependent variables are expanded as

u=Ug(Y)+e?"U,(X,Y)+--
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p=at TV X )4
p=""PAX.Y)+
0= 0V 4+£270,(X, V)4, (3)

where Ug(Y) and 6,4(Y) are the upstream flat-plate
boundary layer velocity and temperature profiles,
evaluated at x = (. The leading term in the expansion
is the boundary layer solution in the absence of the
hump, since this is a small perturbation theory. Sub-
stitutions of the expansions (5) into equations (2)
gives

I
Py =0
oU, )
UB(Y)EX; +URNV, =0
U (Y)CSV‘ — (‘P'?P,
MUy T8y
a0, oo
UylY) e +6p(Y3V, = 0. )]

The solution of the above equations may be written
as

U, = Up(1) A
V) = ~Up(N) A (X)
A=»mw41wm%z

0, = 8,(A(X), N

where A(X) is an unknown function to be determined
by matching with the inner solution, and the prime
denotes a derivative.

The solution given by equations (7) does not satisfy
the wall boundary conditions and so a lower deck
is required close to the solid surface where X and
¥ = ¥/e*7 are the O(1) coordinates. The perturbations
to the upstream boundary layer solution are no longer
small in this region, and the expansions take the form

u= 82"771‘/‘7;&/71‘!()‘71, Yot

o= gsv'hif‘ '»’724'79!(.{;’},”),&_. .

p= €4r:7'}’2’;7;{0;7p‘(X],}"1)"}””4- (8)
where
A= Ug(0),
v ::.f [Un(D} dt %
4
and
X, =7 NTpsTy
)}! g *‘J ) l’:7/‘£4/?8»2:7 Y (]0)

are scaled coordinates defined for convenience. We
also define
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alx)y =7 VAR AX) (rH

and

Flxy =2 VTR, (12)

Here, A is the wall shear stress for the natural con-
vection boundary layer at x = 0 in the absence of the
hump, and y is a constant used in the double-deck
pressure—displacement relation. The advantage of
scaling out 4 and + is that the results for the lower
deck velocity and temperature fields in the scaled co-
ordinates are independent of the upstream flat-plate
boundary layer solution. The results can therefore be
applied to any jet-like boundary flow if the constants
A and v are known. The asymptotic structure of the
temperature field in the lower deck depends on the
thermal boundary conditions on the surface of the
protrusion and will be considered separately in Sec-
tions 2.2 and 2.3. As shown in ref. [1], temperature
gradients play only a passive role in the double-deck
structure, to leading order. Thus, the leading order
velocity and temperature fields are decoupled, and a
solution for the velocity field may be obtained without
solving the energy equation. The leading order cqua-
tions in the lower deck are

fuy,  dry 0
PYL
&xy o Gy
N - -~ ~2
Cu, du, ap,  uy
“ow, Thay, T Tax, T oy
t . V] nal
p
il
P, (13)
v,

The expansions (8) must match with the boundary
layer solution upstream. Thus,

U, >y, p—»0 as x; - —x. (14)

As y, — oo, they must also match with the main deck
so that
(15)

On the surface of the protrusion, the no-slip and kine-
matic boundary conditions must hold. Thus,

iy =y +a(x,) as oy, - 0.

(16)

Finally, since the normal pressure gradient vanishes
across the lower deck,

u,=v,=0 on y =hf(x).

d*a
= s, 17
P dx? (17
which gives a relation between pressure and dis-
placement.
We now introduce the following transformations:
Iy =y —Af(x)
df

W, =, —hu, dx,
d = a(x)+hfx). (18)

By Prandt!’s transposition theorem [10, 11}, equations
(13) remain unchanged in form under this trans-
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formation, with z, and w, replacing y, and v, respec-
tively. The boundary conditions become

u; =w; =0 on z,=0

u, >z, +d(x;) as z; >

u,—>z,w,p, —0 a x, » —aw. (19)

The transformation maps the surface y, = Af(x,) to

T srnacfnrand anarding tac
The transformed coordinates

iln Oat ciirlons - n
LIIC Ildl sullalC 2 = U,
(x,,z,) are not orthogonal. However, a regular rec-
tangular computational grid may be used to solve the

equations numerically.

2.2. The thermal boun

The therma ry layer for un

undary layer uniform
temperature boundary conditions

If the surface of the protrusion is maintained at the
same temperature, T,,, as the plate, the asymptotic
expansion for temperature in the lower deck is given

by
0=1+¥Ty"70 %0l (x,, y)+---, (20)
where

u = 05(0)

is the wall heat flux for the natural convection bound-
ary layer for the flat plate at x = 0.

The leading order energy equation in the lower deck
takes the form

@n

a6, 00, 1 9%, p
R P

where the transformation (18) has been used. Equa-
tion (22) has to be solved subject to the boundary
conditions :

atz, =0, 6, =0
as z, — o0, 0, —z,+d(x,)
as x; » —o, 8, -z, 23)

2.3. The thermal boundary layer for discontinuous wall
temperature boundary conditions

In this section, we consider the case where the sur-
face of the protrusion is held at a temperature T,
different from T,. The asymptotic expansion for tem-
perature now takes the form

9=1+(K—1)90(X1a}’1)+"', (24)
where
To—T7,

is a dimensionless parameter representing the jump in
wall temperature. The leading order energy equation
in Prandtl’s coordinates is given by

30, a0, 1 %0,
u'@xl w'@z, T Pr 6zt

(26)

Matching with the upstream solution yields
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8,-0 as x, » —o0. @n
Matching with the main deck results in
f,—0 as z, - 0. (28)
The wall boundary condition becomes :
1, x . <x,<xr
atz=0, 6= {0, otherwise 29)

where x; and x; represent the leading and trailing
edges of the hump; that is, f(x,) =0 if x, < x_ or
if x, > xr.

Equations (26)—(29) imply that 8, = 0 if x; < x.
Thus, in this case, there is no upstream influence on
the double-deck scale. The temperature profile ahead
of a discontinuity in wall temperature is influenced
only in a smail region where sireamwise conduction
of heat is as important as transverse conduction
[1, 12]. This is the region where x and y are of
O (£*?) and is not considered in this paper.

Since there is no upstream influence, the com-
putations can be started at x, = x.. The leading edge
singularity is removed by the following trans-
formation :

E=x—x
Z
q:E—U—}. (30)

In (¢, 1) coordinates, the lower deck energy equation
has the form

0y (s mui 00, 1 36,
I (5 36 )y~ b ag? OV

The boundary conditions are:

g3y

L, 0<E< (ip—x0)
atn=0, 0, = 0, &> (xr—x) ’
asnp— o0, 8,=0. (32)

At &€ = 0, equation (31) reduces to
0%0, o Pr ,00,
W 3 ‘5’? =0, (33)

where 1, is the wall shear stress at £ = 0. The initial
conditions for equation (31) are generated by solving
equation (33) subject to boundary conditions (32).

3. THE NUMERICAL METHOD

The lower deck momentum equation was solved by
a hybrid spectral finite difference method. The numeri-
cal method is based on that of Burggraf and Duck
[13]. The semi-infinite interval 0 < z, < co is mapped

to a finite interval by the transformation
z, =G (1). 34)

The pressure gradient term is eliminated from the
momentum equation by differentiating it with respect
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to z,, and the solution variables are split into two
components, namely. that corresponding to uniform
shear (¥, = z,) and a perturbation component. The
perturbation components are then transformed from
physical to spectral variables using the Fourier inte-
gral transform in x,, e.g.

T*{w, ) = f k T(x, e ™ idx,, (35)

where the tilde denotes perturbation components and
the asterisk denotes a transformed variable. The
resulting transport equation for the perturbation
shear stress is given by

1 52fjf G'(1y OT*
G o~ [G(0] a

—iwG(HT* = R*,

(36)
where
R=a, Ty 0 O 37
éxy G at
and
1 éa
=g ‘;‘t‘ . (38)

The boundary conditions applied to equation (36)
are:

at 1 =0,

é}“’*

£
—;7 = —im‘G’(t)[hf*(w)—J T*{w, 1’)dz’];
7 0

ast—t,, t*=0. (39)
This system of equations was solved by a finite differ-
ence method. Central differences were applied on the
t-derivatives in equation (36). The t-derivative in the
interaction condition in equation (39) was replaced
by a three-point backward difference formula. Quad-
ratures were evaluated by the trapezoidal rule.
The function G (f) was taken to be
Gy = 40
") =1_, (40)
Uniform steps At =(_/(J—1) in 1, where J is the
number of points in the z-direction, correspond to
non-uniform steps Az, in z,. The transformation (40)
has the property that points are concentrated close to
the solid boundary z; = 0.
The grid spacings Aw and Ax, were chosen to satisfy
the relation
2n
Ax = 41
X, Aw X 45
where K is the number of points in the x,-direction.
The range of x, was truncated to
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K 'K
~ 5 Axy €\, £ (2 - )A.\‘;

while the range of w was truncated to

K K
- Q'Aw <ow< <2 —-l)Am.

Relation (41) allows fast transformation of variables
between physical space and spectral space, using the
fast Fourier transform technique of Cooley and Tukey
[14]. Aliasing errors in the evaluation of the con-
volution product R* were removed by padding or
truncation [15].

After several trials, 7, was fixed at 0.95 and Ax,
was set to 0.0625. J and K were taken to be 61 and
512, respectively.

The lower deck energy equation was solved in
physical space. This avoids problems associated with
poor convergence of the discrete Fourier transform
near points of discontinuity in the wall boundary tem-
perature. Derivatives in the normal direction were
discretized by central differences, while derivatives in
the streamwise direction were approximated by a two-
point upwind difference scheme. For flows without
separation, the upwind difference scheme is equivalent
to a backward difference scheme, and the solution is
obtained in a single sweep. For separated flows, sev-
eral sweeps are required in the streamwise direction.

4. RESULTS AND DISCUSSION

Results have been obtained for the quartic jump

, (=D <1
Sy} =

0. >0 42)

for hump heights # = 0.1, 1 and 3, and two Prandtl
numbers: Pr = 0.7 (air) and Pr = 8 (water). Details
of the main deck displacement, induced pressure and
wall shear stress are presented in Figs. 2-4. A typical
streamline plot is shown in Fig. 5 for # = 3. Resulis
for the heat transfer rates are presented in Figs. 6-9.
There is a region of upstream influence ahead of
the protrusion where the main deck flow decclerates,
asindicated in Fig. 2. Consequently, the pressure riscs

15
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r 3 i
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[ ) — e 4
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FiG. 2. Main deck displacement,
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FiG. 4. Wall shear stress distribution.

in this region (Fig. 3), while the wall shear stress
decreases (Fig. 4). Beyond the leading edge of the
protrusion, the flow accelerates to a maximum near
the crest of the protrusion (Fig. 2). As expected, a
favorable pressure gradient is developed on the wind-
ward side of the hump (Fig. 3), and the wall shear
stress rises drastically as the flow accelerates in this
region (Fig. 4). On the leeward side of the hump, the
flow decelerates rapidly to a minimum at the trailing
edge (Fig. 2), and as a result, an adverse pressure
gradient is developed (Fig. 3) and the wall shear stress
decreases in this region (Fig. 4). The flow separates
on the leeward side of the protrusion for hump heights
larger than 1.5. Although there is no external free
stream in this problem, the upstream natural con-
vection boundary layer acts like a forced flow, leading
to flow separation in the wake of the hump. Figure
5 shows the streamlines for separated flow past a

5

-3 -2 -1

o
~
w

FIG. 5. Streamlines in the lower deck.
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protrusion of height 2 = 3. The streamlines above the
protrusion are asymmetric due to the displacement
effect of the separation bubble in the wake of the
protrusion. For 4 =3, the flow separates around
x; = 0.5 and reattaches at x, = 2.25, as indicated by
Fig. 5. There is a region of negative shear stress inside
the separation bubble. Beyond the trailing edge, the
flow accelerates again, and the main deck dis-
placement and the wall shear stress approach the
unperturbed boundary layer solution asymptotically
from below (Figs. 2 and 4). The pressure recovers
rapidly in this region and overshoots the ambient
value, and then decreases asymptotically to the am-
bient value from above far downstream of the hump
(Fig. 3).

The local Nusselt number for the uniform wall tem-
perature boundary condition, defined in terms of
(T,—T.), the thermal conductivity k, and the length
L, can be expressed as

Nu= —¢ "uNu +---,

30,
Nu, = 76:7
“1/z=0

is the leading term in the asymptotic expansion (43).
The variation of Nu,(x,) is plotted in Figs. 6(a) and

(43)

where

(44)

18
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FiG. 6(a). Local heat transfer rate for uniform wall tem-
perature boundary condition and Pr = 0.7.
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FiG. 6(b). Local heat transfer rate for uniform wall tem-
perature boundary condition and Pr = 8.
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(b) for Pr = 0.7 (air) and Pr = 8 (waler) respectively.
In both cases, the local heat transfer decreases
upsiream of the protrusion as the flow decelerates, to
a minimum at the leading edge of the protrusion.
Beyond the leading edge, the wall heat transfer rate
rises drastically as the flow accelerates and convects
heat away from the plate at a faster rate. The heat

transfer rate reaches a maximum slightly ahead of

the crest of the hump, and then decreases as the flow
decelerates on the leeward side of the hump, 1o a
minimum near the trailing edge. Beyond the trailing
edge of the hump, the wall heat transfer rate increases
and asymptotically approaches the unperturbed
boundary layer solution. For Pr = 8, the magnitude
of the local heat transfer rates are larger than the
corresponding heat transfer rates for Pr = 0.7, as the
thermal boundary layer is thinner and the temperature
gradients at thc wall are larger.

The local Nusselt number for the discontinuous
wall temperature boundary conditions, defined in
terms of T,,— T ., the thermal conductivity & and the
length L, may be expressed as

9:7,

Nu=¢g"""s VTIP3 Nug -, (45)

where

1
<TTN
0.5 i = L
o N
~of
4]
»pe
& 05|
W
A1 F
-15 —h=0.1
- 1
- 3
2 1
0 1 2 3 4 5

F1G. 7(a). Local heat transfer rate for discontinuous wall
temperature boundary condition and Pr = 0.7.

€Ny

FiG. 7(b). Local heat transfer rate for discontinuous wall
temperature boundary condition and Pr = 8.
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3

Pr = 0.7. Equation (46) indicates that Nuy (&) ~ & !
near ¢ = 0. For humps of small height, it is expected
that "3 Nu (&) will be constant along the surface of
the hump. Thus, the axial variation of &' Nu (&) has
been plotted in Fig. 7(a), rather than the variation of
Nuy(&). As the height of the protrusion is increased,
the flow decelerates ahead of the protrusion and heat
is convected away from the surface at a slower rate
near the leading edge. The values of &' Nuy(&) for
/= 1 and 3 near the leading edge are therefore lower
than the corresponding value for & = 0.1. The curves
for =1 and 3 show that the local heat transfer rate
increases on the windward side of the hump as the
flow accelerates, and decreases on the leeward side as
the flow decelerates. For £ = 3, the flow scparates
ahead of the trailing edge, and the heat transfer rate
reaches a local minimum at the separation point,
where the local flow is similar to a reverse-stagnation
point flow. Just downstream of the separation point,
the local wall heat transfer rate riscs rapidly as the
mixing of cold fluid with hot fluid induced by the
recirculating eddy carries heat away from the surface
at a faster rate. Downstream of the trailing edge,
the wall heat flux changes sign as the hot fluid now
transfers heat to the cooler wall. As the thermal
boundary layer grows in thickness, the wall heat flux
decays asymptotically to zero. The axial variation of
Nuy(&) for Pr = 8 follows the same trend (Fig. 7(b)).
The magnitude of the local heat transfer rates are,
however, larger for Pr = 8 as the thermal boundary
layer is thinner.

The total heat transfer rate, Q, from the surface of
the protrusion can be obtained by integrating the local
heat transfer rate. For uniform wall temperature
boundary conditions, it can be expressed as

i ¢ LT 37

— SO . 8T N
k(T“v*T,) & Is A ﬂQ;‘F ’

(47)
where

¢, :J I‘Vu((xi)d-xl* 48)

The values of y, A and g for Pr = 0.7 and 8 are given
in Table 1. Q, is plotted as a function of the hump
height # in Fig. 8. It is seen that as / increases, @,
increases to a maximum around /4 = 1.5 and then
decreases. This may be explained by referring to the
local wall heat flux distribution (Figs. 6(a) and (b)).
As the height of the protrusion is increased, the local
heat transfer rates increase on the windward side of
the hump and decrease on the leeward side. For pro-
trusion of heights 2 < 1.5, the net effect is an enhance-

Table 1. Coefficients for heat transfer rate

Pr b A H
0.7 03328 0.6789 —0.3532
80 0.0601 0.4387

—0.7752




Natural convection near a small protrusion on a vertical plate

212

21 |

208 |-

198 1 1 )
0 05 1 15 2 25 3

h
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Fi1G. 9. Total heat transfer rate from surface of protrusion
for discontinuous wall temperature boundary condition.

ment in the total heat transfer rate. For humps of
larger height, the adverse pressure gradient induced
on the leeward side slows down the flow considerably,
and as a result, the heat transfer rates decrease. The
fluid inside the separation bubble moves very slowly.
Heat transfer in this almost stagnant region is mainly
by conduction. Locally, the separated region acts like
an insulating layer and the heat transfer rates are
reduced.

The total heat transfer rate from the surface of
the protrusion for the discontinuous wall temperature
boundary conditions may be expressed as

o 3072074177
J— P ] ! Nk ] b
l(Tw TX) & YA ( )QO E]

49
where

2
Qo =L Nuy(£) de. (50)
Figure 9 shows the variation of Q, with hump height
h. As in the case of the uniform wall temperature
boundary condition, @, increases initially with % and
then decreases. For Pr = 8, Q, reaches a local mini-
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mum around A = 2.25 and then increases again. This
increase in the heat transfer rate may be attributed to
the mixing of cold fluid with hot fluid induced by the
recirculation of fluid in the separation bubble. Since
the plate beyond the trailing edge of the protrusion is
cooler than the surface of the protrusion, the reverse
flow in the separated region brings cooler fluid
towards the relatively hotter surface of the protrusion,
thereby enhancing the heat transfer rate.

It is worth noting that while the constants y, 4 and
4 used in equations (47) and (49) for calculating the
total heat transfer rate from the surface of the pro-
trusion depend on the upstream flat-plate boundary
layer solution, the values @, and @, presented in Figs.
8 and 9 do not depend on the flat-plate boundary
layer solution. Thus, equations (47) and (49) may
be used to predict the heat transfer rate from the
protrusion for any jet-like boundary layer flow if the
values of 7, 4 and u are known.
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CONVECTION NATURELLE AUTOUR D'UNE PETITE EXCROISSANCE SUR UNE
PLAQUE VERTICALE

Resumé—On considére la convection naturclle au voisinage d une petite excroissance dans la couche limite
d’une plague plane verticale. Des excroissances de hauteur ~ Le” 7 et de longueur ~Ls®", ou e = Gr "%,
sont analysées dans le cadre de la théorie du double pont. Les ¢quations du pont inférieur sont résolues
numériquement par une méthode hybride spectrale aux différences finies. Les densités de flux thermiques
sont déterminées pour deux conditions aux limites thermiques. Dans le premier cas, I'excroissance est
maintenue A la méme température que la plaque alors que dans le second cas 'excroissance est & une
température plus ¢levée gue celle de la plaque. L'effet de la séparation de la couche limite sur le transfert
thermique cst étudié.

NATURLICHE KONVEKTION IN DER UMGEBUNG EINES KLEINEN VORSPRUNGS AN
EINER SENKRECHTEN PLATTE

Zusammenfassung—Betrachtet wird die natiirliche Konvektion in der Umgebung eines kleinen Vorsprungs,
der in die Grenzschicht einer senkrechten Platte eingebettet ist. Vorspriinge der Hohe L&°7 und der Linge
Le®" mit e = Gr~ "* werden mit Hilfe der Zweischicht-Theorie untersucht. Die Gleichungen fiir die untere
Schicht werden numerisch mit Hilfe einer hybriden spektralen Finite-Differenzen-Methode untersucht. Die
Wiirmestrome werden fiir zwei thermische Randbedingungen bestimmt. Im ersten Fall wird der Vorsprung
auf gleicher Temperatur wie die Platte gehalten, wihrend im zweiten Fall die Temperatur des Vorsprungs
héher liegt als diejenige der Platte. Die Auswirkung einer Grenzschichtablsung auf den Wirmestrom wird
untersucht.

ECTECTBEHHAS KOHBEKLIMA BBJIM3M HEBOJIBIIOI'O BBICTVYIIA HA
BEPTUKAJILHONM IJIACTUHE

Annoramun—MocneyeTcs ecTecTseHHAs KOHBEKLUS B NOTPAHRYHOM CJ10¢ BOIM3H HeGONBIIOro BHICTYNA
Ha BEPTHKA/ILHON TJIOCKOM miacTHHe. PaccMaTpHBAIOTCH BRICTYNBI BRicOTOR ~ Le®7 u mmmnoit ~ Le®7,
rae &= Gr~ % VYpapHeHHs DEUIAIOTCH 4YHCIEHHO C HCHONb3OBaHHEM IMOPHAHOrO CHEKTOPAJIBLHOTO
KOHEYHO-PA3HOCTHOTO MeTona. Onpeneisorcs CKOPOCTH TEIUIONEPEHOCA [JIS TEMIOBBIX I'DAHHYHBIX
ycnoBuil ABYX BHIOB. B mepsom ciydae TeMmepaTypa BBICTYNA NOMNEPXKHBAETCS PAaBHOM TeMIepaType
MUIACTHHBI, BO BTOPOM OHA IIPEBBILIAET TEMIEPATYPy IUIACTHHBL, OnpeNenseTcs BIXSHAE OTPHIBA NOrpa-

HHYHOI'O CNIOA HA CKOPOCTH TCHIONEPEHOCA.



