
0017-9310~92 .$5.w+o.w 

(.‘, 1992 Pergamon Press Ltd 

natural convection near a small protrusion 
on a vertical plate 

S. GHOSH MOULIC and L. S. YAO 
Department of Mechanical and Aerospace Engineering, Arizona State University, Tempe, 

AZ 85287-6106, U.S.A. 

(Received 30 fufy 1991 and itzfinal form 30 November 199 I) 

Abstract-Natural convection in the vicinity of a small protrusion embedded in the boundary layer on a 
vertical flat plate is considered. Protrusions of height N L.?” and length _ LEE”, where E = CA-‘/“, are 
analyzed in the context of double-deck theory. The lower deck equations are solved numerically by a 
hybrid spectral finite difference method. The heat transfer rates are determined for two thermal boundary 
conditions. In the first case, the protrusion is maintained at the same temperature as the plate, while in the 
second case, the protrusion is held at a temperature higher than the plate temperature. The effect of 

boundary layer separation on the heat transfer rate is investigated. 

1. INTRODUCTION 

THIS PAPER is concerned with heat transfer in the 
vicinity of a small protrusion embedded inside a jet- 
like boundary layer on a flat plate. This is a model to 
study the cooling of electronic chips, and also to study 
the details of flow and heat transfer near a single 
roughness element on an otherwise smooth plate. The 
presence of a protrusion can produce significant local 
changes in the flow along a flat plate and alter the 
heat transfer rates appreciably. If the size of the pro- 
trusion is large, boundary layer separation may occur. 
The induced mixing due to boundary layer separation 
may enhance the rate of heat transfer. The natural 
convection boundary layer along a vertical flat plate 
has been used as an example of a jet-like boundary 
layer flow in this paper. The results can be applied to 
other jet-like boundary layer flows over protrusions 
where the fluid outside the boundary layer is at rest 
or moving much slower than the fluid inside the 
boundary layer such as the wall jet produced by a 
source of momentum upstream. 

The flow over a protrusion embedded in a jet-like 
boundary layer on a flat plate may be described by a 
double-deck structure [I+] if the streamwise length 
of the protrusion is O(Z,E~;‘) and its height is O(LE’~~), 
where L is the distance from the leading edge of the 
plate to the location of the protrusion and E = Re- ‘I2 
or Gr-“4 [5]. Here, Re is the appropriate Reynolds 
number for forced flows such as the wall jet, and Gr 

is the Grashof number for natural convection. The 
double-deck structure follows closely the usual triple- 
deck ideas for local boundary layer interactions [b 
91, the difference being that here there is no outer 
flow; hence, there is no upper deck. The presence of 
the protrusion results in large streamwise accel- 
erations and temperature gradients in a small region 
around the protrusion, and the flow cannot be 

described by the classical boundary layer equations. 
In the outer part of the boundary layer, the viscous 
and the conduction terms do not change significantly 
from their upstream values, and the perturbed flow 
is described by inviscid-flow equations. The inviscid 
perturbations do not satisfy the no-slip and wall tem- 
perature boundary conditions. Near the wall, there 
exists a sublayer or lower deck where the viscous 
and conduction terms cannot be neglected. Thus, the 
boundary layer is divided into two parts, an outer 
layer or main deck, and an inner sublayer or lower 
deck. The flow in the lower deck is described by the 
boundary layer equations, but with an induced pres- 
sure gradient to account for the presence of the pro- 
trusion. The pressure outside the boundary layer 
being constant, there must exist a transverse pressure 
gradient across the main deck to sustain the induced 
streamwise pressure gradient in the lower deck. The 
double-deck structure provides a consistent descrip- 
tion of this viscous-inviscid interaction for a jet-like 
boundary layer. 

The induced pressure gradient may be adverse in 
some regions, and, if large enough, may trigger off 
boundary layer separation although there is no exter- 
nal free stream. Due to the quasi-elliptic nature of the 
double-deck pressure-displacement interaction, the 
Goldstein singularity, which appears in the classical 
boundary layer equations at separation, does not 
occur in the lower deck equations. Thus, small-scale 
separated flows may be computed numerically using 
the double-deck model. 

The present investigation has been restricted to pro- 
trusions which fall into the double-deck scale. The 
flow over a hump inside a free-convection boundary 
layer has been analyzed in the context of double- 
deck theory by Merkin [5]. Merkin, however, did not 
obtain a solution for the energy equation since tem- 
perature perturbations on the double-deck scale do 
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NOMENCLATURE 

z 
displacement function Greek symbols 
displacement function in transformed 
coordinates ; 

thermal diffusivity 
thermal expansivity 

.I’ surface geometry function i’ =jz [U,(t)]‘dt, a constant used in the 

??I gravitational acceleration double-deck pressure~isplacement 
Gr Grashof number relation 
h height of protrusion E =Gr i ‘. used as a small expansion 
k thermal conductivity parameter 
L length from leading edge of plate to transformed transverse coordinate 

protrusion ; dimensionless temperature 
Nu Nusselt number ti =(T,,-T,)/(T,-TT,),jumpin 

P pressure wall temperature for discontinuous 
Pr Prandtl number wall temperature boundary 

e total heat transfer rate from protrusion condition 
T temperature 1 = U;(O), wall shear stress for the 

T* temperature of surface of protrusion jet-like boundary layer at 

T, plate temperature x = 0 

TX. ambient tem~rature P = &(O), wall heat flux for the jet-like 
u x-component of velocity boundary layer at x = 0 

uo characteristic velocity V kinematic viscosity 
V y-component of velocity 5 axial coordinate measured from leading 
W transformed velocity edge of protrusion 
.X axial coordinate P density 

Y transverse coordinate t shear stress 
Z transformed transverse coordinate. W Fourier transform variable. 

not affect the leading order velocity field. In this paper, 
we demonstrate that although temperature plays a 
passive role in the double-deck interaction, the pres- 
ence of the protrusion produces significant local 
changes in the temperature and heat transfer rates. 

The physical model is shown in Fig. 1. We consider 
steady, laminar natural convection flow along a ver- 
tical plate with a small protrusion embedded within 
the lower deck of the double-deck structure. The plate 
is assumed to be maintained at a uniform temperature. 

x 

-. ” Lower Deck 

FIG. 1. Physical model and coordinates. 

T,, which is higher than the ambient temperature ‘I’,. 
Two thermal boundary conditions are considered for 
the protrusion. In the first case, the surface of the 
protrusion is maintained at the same temperature T, 
as the plate. In the second case, the surface of the 
protrusion is held at a different temperature To. The 
asymptotic structure of the temperature field is differ- 
ent for these two cases. To leading order, the flow is 
not influenced by tem~rature perturbations on the 
double-deck scale. Thus, the flow structure is the same 
for both cases. The double-deck Row is discussed in 
Section 2.1. The details of the temperature field for 
the uniform wall temperature boundary condition and 
the discontinuous wall temperature boundary con- 
dition are considered separately in Sections 2.2 and 
2.3 respectively. 

In Sections 2. I, 2.2 and 2.3, the dependence of the 
double-deck structure on the natural convection 
boundary layer has been scaled out. The solutions 
presented in this paper are valid for any jet-like 
boundary layer flow over a hump. Applying these 
solutions to other jet-like Aows requires a knowledge 
of the wall shear stress, i, at the location of the hump 
for the jet-like flow on the plate, the local displacement 
effect, y, of the jet-like flow and the wall heat flux, 
p, at the location of the hump for the jet-like flow. 
Numerical results for the natural convection bound- 
ary layer on a vertical plate are provided in detail as 
an example in Section 4. 
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The lower deck equations have been solved numeri- 
cally by a hybrid spectral finite difference method. 
Details of the numerical method are given in Section 
3. Results for a natural convection boundary layer 
are presented in Section 4 for two Prandtl numbers : 
Pr = 0.7 (air) and Pr = 8 (water). A quartic hump 
has been chosen as a specific example of a protrusion. 
Since the protrusions considered in this study are very 
small, we do not expect the results to vary significantly 
if the shape of the protrusion is changed. 

The results indicate that the local wall shear stress 
and wall heat transfer rates increase on the windward 
side of the protrusion and decrease on the leeward 
side for both the uniform wall temperature and dis- 
continuous wall temperature boundary conditions. 
Results for the total heat transfer rate from the surface 
of the protrusion have been obtained for various 
hump heights. For the uniform wall temperature 
boundary condition, it is found that as the height, h, 
of the protrusion increases, the total heat transfer 
rate from its surface increases to a maximum around 
h = 1.5 and then decreases. The total heat transfer 
rate from the protrusion for the discontinuous wall 
temperature boundary condition shows a similar 
trend. The results for Pr = 8 (water), however, indi- 
cate that for the discontinuous wall temperature 
boundary condition, the total heat transfer rate 
reaches a local minimum around h = 2.25 and then 
increases as h is increased further. This increase in 
heat transfer rate may be attributed to the mixing of 
cold fluid with hot fluid induced by the recirculation 
of fluid in the separation bubble. Since the current 
model is valid only for small-scale separation, the 
significance of the heat transfer enhancement due to 
the mixing induced by flow separation cannot be fully 
elucidated. The results, however, clearly indicate the 
trend. 

2. ANALYSIS 

We consider steady, laminar, two-dimensional free 
convection flow along a vertical flat plate with a small 
protrusion located at a distance L from its leading 
edge (Fig. 1). Cartesian coordinates ($1) are chosen 
such that the Z-axis is aligned with the direction of 
gravity, and the y-axis is normal to the plate. The 
corresponding velocity components are (U, 6). The 
leading edge is at z? = -L, and the plate is at j = 0. 
We introduce the following dimensionless variables : 

X2 
L’ 

y = f (coordinates) (la) 

n=u, u = i (velocities) (lb) 
uo 

p =P-AC 
x (pressure) 

%= e (temperature), (Id) 
w m 

where 

is a reference velocity, g is the gravitational accel- 
eration, b is the thermal expansivity, T, is the tem- 
perature of the plate, T, is the ambient temperature, 
pm is the ambient pressure and p is the reference den- 
sity. 

The equations describing the flow are the conti- 
nuity, Navier-Stokes and energy equations. Employ- 
ing the Boussinesq approximation, these equations 
may be written in dimensionless form as 

u~+u;=;($+$), (2d) 

where 

e = Gr-‘1“ (2e) 

is the order of the free convection boundary layer 
thickness for fluids with Prandtl number of order one, 

Gr = gfi(T,-- T,)L’/v’ 

is the Grashof number, 

(W 

Pr = v/u (2g) 

is the Prandtl number, v is the kinematic viscosity and 
tl is the thermal diffusivity. 

Following Merkin [5], we consider protrusions of 
height of O(LE~“) and length of O(Lt?“), with pro- 
files 

y = E9”hF(X/E6”), (3) 

where the function F is such that hF(X) is of order 
one or less for all X = x/s 6/7. The protrusion or hump 
may then be taken as a O(1) disturbance within the 
lower deck of a double-deck structure. The double- 
deck flow structure is given in detail in ref. [I] and will 
be described only briefly here. 

2.1. The double deck 
In the main deck or outer layer, the O(1) coordi- 

nates are 

y2. 
& 

The dependent variables are expanded as 

u = U,(Y)+& 2”U,(X, Y)+.. 

(4) 
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{‘ = >: i 7 t’, (,I., y) + 

p=i:J7P,(X, Y)+-.. and 

il=O,(Y)tc~:8,(x,Y)i-..,. (51 
./‘(“V,) = :’ 1 7;_4 ‘F(X), (12) 

Were, i is the wall shear stress for the natural con- 

where U,(Y) and O,(Y) are the upstream flat-plate vection boundary layer at .X = 0 in the absence of the 

boundary layer velocity and temperature profiles, hump, and y is a constant used in the double-deck 

evaluated at .Y = 0. The leading term in the expansion pressure-displacement relation. The advantage 01 

is the boundary layer solution in the absence of the scaling out iL and ;’ is that the results for the lowe 

hump, since this is a small perturbation theory. Sub- deck velocity and temperature fields in the scaled co- 

stitutions of the expansions (5) into equations (2) ordinates are independent of the upstream flat-plate 

gives boundary layer solution. The results can therefore be 

?U -$ + ?$ = 0 

applied to any jet-like boundary fow if the constants 
i. and :’ are known. The asymptotic structure of the 
tcnlperatLire field in the lower deck depends on the 

(i”(Y)!&! +Ug(Y)V, = 0 
thermal boundary conditions on the su&ce of the 

protrusion and will be considered separately in Scc- 
tions 2.2 and 2.3. As shown in ref. [I], temperature 
gradients play only a passive role in the double-deck 

structure. to leading order. Thus. the leading order 
^ 

U,(Y) ;; +e;( Y)V, = 0. 

velocity and temperature fields are decoupled, and a 

(6) solution for the velocity field may be obtained without 
solving the energy equation. The leading order equa- 

The solution of the above equations may be written tions in the lower deck are 

as 

P, = --A”(X) )r [u,(t)]‘dt 
I Y (13) 

0, = og( Y).4(X), (7) 
The expansions {S) must match with the boundary 

where A(X) is an unknown function to be determined layer solution upstream. Thus, 
by matching with the inner solution, and the prime 
denotes a derivative. 

The solution given by equations (7) does not satisfy As _I’, + CG. they must also match with the main deck 
the wall boundary conditions and so a lower deck so that 
is required close to the solid surface where X and 
p = Y/C’*’ are the O(l) coordinates. The ~rturbations 
to the upstream boundary layer solution are no longer On the surface of the protrusion, the no-slip and kine- 

small in this region, and the expansions take the form matic boundary conditions must hold. Thus, 

U = E’.7.,‘r7~3!7t4,(X,,.)‘,)+. t4, = t’, = 0 on J, = /tf’(.v,). (16) 

p = ,;57;,- “‘A4.i2’1(X,,y,)+. .f Finally, since the normal pressure gradient vanishes 

p=E 
47,,2,7~b:7P,(,~,_?:1)+ . . . . 

across the lower deck, 
1 (8) 

where (17) 

;, = U&(O), which gives a relation between pressure and dis- 

i’ 
’ [U,(r)]‘dr 

placement. 
7 =I (9) We now introduce the following transformations : 

0 
Jl = l’, -hf’(.r,) 

and 

X, =; q;7/1’7x 

J’z = 1’ I, 7iU-- 2 7 Y (10) d = u(.x,)+hJ’(.~,). (18) 

are scaled coordinates defined for convenience. We By Prandtl’s transposition theorem [lo, 1 l], equations 
also define (13) remain unchanged in form under this trans- 



formation, with z, and W, replacing y, and v, respec- B. -0 as x, --f --co. (27) 

tively. The boundary conditions become 
Matching with the main deck results in 

u, =w, =0 on z, =0 
f3,-+0 as z,-+co. (28) 

u, +z,-td(x,) as zI + co 
The wall boundary condition becomes : 

1, XL < x, <XT 

The transformation maps the surface y, = hf(x,) to at Z = 0, O0 = o otherwise (29) 

the flat surface z, = 0. The transformed coordinates 
L 

(x,, z,) are not orthogonal. However, a regular rec- where xL and xT represent the leading and trailing 
tangular computational grid may be used to solve the edges of the hump ; that is, f(x,) = 0 if x, < x,_ or 
equations numerically. ifx, >xT. 

Equations (26)-(29) imply that B0 = 0 if xi < xL. 

2.2. The thermal boundary layer for uniform wall Thus, in this case, there is no upstream influence on 

temperature boundary conditions the double-deck scale. The temperature profile ahead 

If the surface of the protrusion is maintained at the of a discontinuity in wall temperature is influenced 

same temperature, T,, as the plate, the asymptotic only in a small region where streamwise conduction 

expansion for temperature in the lower deck is given of heat is as important as transverse conduction 

by [l, 121. This is the region where x and y are of 

N= 1+&2”y”‘12-4i’~~,(X,,yl)+.“, (20) 
0(c3:*) and is not considered in this paper. 

Since there is no upstream influence, the com- 

where putations can be started at x, = xL. The leading edge 

p = G(O) (21) 
singularity is removed by the following trans- 
formation : 

is the wall heat tlux for the natural convection bound- 
ary layer for the flat plate at x = 0. 

The leading order energy equation in the lower deck 

takes the form 

ao, ae, I a%, 
u, -+w, - = - -- 

dX, aZ, Pr aZ: ’ 
In (5, q) coordinates, the lower deck energy equation 

W) has the form 

where the transformation (18) has been used. Equa- 
tion (22) has to be solved subject to the boundary 
conditions : 

at z, = 0, 0, =o 
The boundary conditions are : 

1, 0 < 5 G (XT-XL) 
as z, -+ co, 0, +zl +d(x,) 

at 
f~ 

= 0, B0 = 0, 5 > (X-r--XL) ; 
as x, + -co, 0, +z,. (23) 

asg+co, BO=O. (32) 

2.3. The thermal boundary layer for discontinuous wall At [ = 0, equation (31) reduces to 
temperature boundary conditions 

In this section, we consider the case where the sur- 
2 

!A+ t,Pr ,a@, 

face of the protrusion is held at a temperature T, a+ 
-p ---0, 

al? 
(33) 

different from T,. The asymptotic expansion for tem- 
perature now takes the form 

where r0 is the wall shear stress at 5 = 0. The initial 
conditions for equation (31) are generated by solving 

o= l+(IC--)e,(x,,Y,)+..., (24) equation (33) subject to boundary conditions (32). 

where 
3. THE NUMERICAL METHOD 

T,-Tm 
IC=T,-T, (25) The lower deck momentum equation was solved by 

a hybrid spectral finite difference method. The numeri- 
is a dimensionless parameter representing the jump in cal method is based on that of Burggraf and Duck 
wall temperature. The leading order energy equation [ 131. The semi-infinite interval 0 < z, -C co is mapped 
in Prandtl’s coordinates is given by to a finite interval by the transformation 

de, do, i a%, 
u,-~w,-~-~. (26) 

z, = G,(t). (34) 
ax, az, Pr oz, 

The pressure gradient term is eliminated from the 

Matching with the upstream solution yields momentum eauation bv differentiatina it with resoect m, 
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5 =x,-x, 

ZI 
v=1;3. 5 

(30) 



to r,, and the solution variables are split into two 
components, namely. that corr~spondi,ng to uniform 
shear (N, = z,) and a perturbation component. The 
perturbation components are then transformed from 
physical to spectral variables using the Fourier inte- 
gral transform in s,, e.g. 

i 

i 
f*(w, t) = f(x,,t)c -“‘i’g d.t-,. (3.5) 

I 

where the tilde denotes perturbation components and 
the asterisk denotes a transformed variable. The 
resulting transport equation for the perturbation 
shear stress is given by 

where 

(36) 

(37) 

The boundary conditions applied to equation (36) 
are : 

at f = 0, 

(7t* 
- = -iu'G'(t) 
r!t 

z”* (a t’) dr’ ; 

as t + t,, Z” --+ 0. (39) 

This system of equations was solved by a finite differ- 
ence method. Central differences were applied on the 
t-derivatives in equation (36). The t-derivative in the 

interaction condition in equation (39) was replaced 
by a three-point backward difference formula. Quad- 
ratures were evaluated by the trapezoidal rule. 

The function G(t) was taken to be 

G(t) = li, 

Uniform steps At = I,~ /(.I- 1) in f, where J is the 
number of points in the t-direction, correspond to 
non-uniform steps AZ I in z , . The transformation (40) 
has the property that points are concentrated close to 
the solid boundary z , = 0. 

The grid spacings AL\O and AX, were chosen to satisfy 
the relation 

where K is the number of points in the x,-direction. 
The range of X, was truncated to 

while the range of w was truncated to 

Ao,. 

Relation (41) allows fast transformation of variables 

between physical space and spectral space, using the 
fast Fourier transform technique of Cooley and Tukey 
1141. Aliasing errors in the evaluation of the con- 

volution product R* wet-c rcmovcd by padding or 
truncation [ 151. 

After several trials, t,. was fixed at 0.95 and As, 
was set to 0.0625. J and K were taken to bc 61 and 

5 12, respectively. 
The lower deck energy equation was solved in 

physical space. This avoids problems associated with 

poor convergence of the discrete Fourier transform 
near points of discontinuity in the wall boundary tem- 
perature. Derivatives in the normal direction were 

discretized by central diff‘erences. while derivatives in 
the streamwise direction were approximated by a two- 
point upwind difference scheme. For flows without 
separation, the upwind difference schcmc is equivalent 
to a backward difference scheme, and the solution is 

obtained in a single sweep. For separated Rows. sev- 
eral sweeps are required in the streamwisc direction. 

4. RESULTS AND DISCUSSION 

Results have been obtained for the quartic jump 

i 

(I -s:)z. /Xi/ < 1 
.fb- I f = 0. /.\I,/ > I (42) 

for hump heights h = 0. I, 1 and 3, and two Prandtl 

numbers: Pr = 0.7 (air) and Pr = 8 (water). Details 
of the main deck displacement, induced pressure and 

wall shear stress are presented in Figs. 24. A typical 
streamline plot is shown in Fig. 5 for h = 3. Results 
for the heat transfer rates are presented in Figs. 6-9. 

There is a region of upstream influence ahead of 
the protrusion where the main deck flow decelerates, 
as indicated in Fig. 2. Consequently, the pressure rises 

1.5 

I 
-6 -4 -2 II 2 4 6 8 

FIG. 2. Main deck dispiacement. 
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FIG. 3. Pressure distribution 
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FIG. 4. Wall shear stress distribution. 

in this region (Fig. 3) while the wall shear stress 
decreases (Fig. 4). Beyond the leading edge of the 
protrusion, the flow accelerates to a maximum near 
the crest of the protrusion (Fig. 2). As expected, a 
favorable pressure gradient is developed on the wind- 
ward side of the hump (Fig. 3), and the wall shear 
stress rises drastically as the flow accelerates in this 
region (Fig. 4). On the leeward side of the hump, the 
flow decelerates rapidly to a minimum at the trailing 
edge (Fig. 2) and as a result, an adverse pressure 
gradient is developed (Fig. 3) and the wall shear stress 
decreases in this region (Fig. 4). The flow separates 
on the leeward side of the protrusion for hump heights 
larger than 1.5. Although there is no external free 
stream in this problem, the upstream natural con- 
vection boundary layer acts like a forced flow, leading 
to flow separation in the wake of the hump. Figure 
5 shows the streamlines for separated flow past a 

0 J \, \ I 
-3 -2 -1 0 1 2 3 

X1 
FIG. 5. Streamlines in the lower deck. 

protrusion of height h = 3. The streamlines above the 

protrusion are asymmetric due to the displacement 
effect of the separation bubble in the wake of the 
protrusion. For h = 3, the flow separates around 
x, = 0.5 and reattaches at x, = 2.25, as indicated by 
Fig. 5. There is a region of negative shear stress inside 
the separation bubble. Beyond the trailing edge, the 
flow accelerates again, and the main deck dis- 
placement and the wall shear stress approach the 

unperturbed boundary layer solution asymptotically 
from below (Figs. 2 and 4). The pressure recovers 
rapidly in this region and overshoots the ambient 
value, and then decreases asymptotically to the am- 

bient value from above far downstream of the hump 

(Fig. 3). 
The local Nusselt number for the uniform wall tem- 

perature boundary condition, defined in terms of 
(T,+ - r,), the thermal conductivity k, and the length 
L, can be expressed as 

where 

Nu = -a-‘/.LNu,+..., (43) 

(44) 

is the leading term in the asymptotic expansion (43). 
The variation of Nu, (x,) is plotted in Figs. 6(a) and 

1.2 : 

*- 1 
,,*-.---.___ 

z 
._, 

0.8 r 

0.6 ! 
! /’ 
’ / 
’ I 

0.4 : !I 

0.2"" ” 1 ” ” ” 
-6 4 -2 0 2 4 6 8 

FIG. 6(a). Local heat transfer rate for uniform wall 
perature boundary condition and Pr = 0.7. 

tem- 

01 ,,‘, ,,‘,,,,“,‘,“,,,‘,, ,‘,“,I 
-6 -4 -2 0 2 4 6 8 

x, 

FIG. 6(b). Local heat transfer rate for uniform wall tem- 
perature boundary condition and Pr = 8. 



(b) for Pr = 0.7 (air) and Pr = 8 (water) respectively. 
In both cases, the local heat transfer decreases 
upstream of the protrusion as the flow decelerates. to 
a minimum at the leading edge of the protrusion. 
Beyond the leading edge. the wall heat transfer rate 
rises drastically as the flow accelerates and convects 

heat away from the plate at a faster rate. The heat 
transfer rate reaches a maximum slightly ahead 01 
the crest of the hump, and then decreases as the flow 
decelerates on the leeward side of the hump, to a 
minimum near the trailing edge. Beyond the trailing 

edge of the hump, the wall heat transfer rate increases 
and asymptotically approaches the unperturbed 
boundary layer solution. For Pr = 8, the magnitude 
of the local heat transfer rams are larger than the 

corresponding heat transfer rates for Pr = 0.7, as the 
thermal boundary layer is thinner and the temperature 
gradients at the wall are larger. 

The local Nusselt number for the discontinuous 

wall temperature boundary conditions, defined in 
terms of r, - T,_, the thermal ~ondltc~i~ity k and the 
length L, may be expressed as 

where 

Figure 7(a) shows the variation of Nu,(t) for 

1 , I I 

0 1 2 3 4 5 

c 

FIG. 7(a). Local heat transfer rate for discontinuous wall 
temperature boundary condition and Pr = 0.7. 

-2 ; 

-h=O.l 

-3. - - : 

4 “““““” ” 
0 1 2 3 4 5 

t 

FIG. 7(b). Local heat transfer rate for discontinuous wall 
temperature boundary condition and Pr = 8. 

Pr = 0.7. Equation (46) indicates that Nu,,(<) - ; ’ ’ 
near < = 0. For humps of small height. it is expected 
that <’ ‘NUT, will be constant along the surface ol 
the hump. Thus, the axial variation of <’ ‘/Vu,,(<) has 
been plotted in Fig. 7(a), rather than the variation of 

/Vu,,(<). As the height of the protrusion is increased, 
the Row decelerates ahead of the protrusion and heat 
is convected away from the surface at a stower rate 
near the leading edge. The values of <’ ~~~z~,~(~) for 

h = I and 3 near the leading edge are therefore lower 
than the corresponding value for h = 0. I. The curves 
for h = I and 3 show that the local heat transfer rate 
increases on the windward side of the hump as the 

flow accelerates, and decreases on the leeward side as 
the flow decelerates. For h = 3, the flow separates 
ahead of the trailing edge, and the heat transfer rate 

reaches a local minimum at the separation point, 
where the local flow is similar to a reverse-stagnation 

point flow. Just downstream of the separation point, 
the local wall heat transfer rate rises rapidly as the 
mixing of cold fluid with hot fluid induced by the 
recirculating eddy carries heat away from the surface 
at a faster rate. Downstream of the trailing edge, 
the wall heat flux changes sign as the hot fluid now 
transfers heat to the cooler wall. As the thermal 
boundary layer grows in thickness, the wall heat flux 
decays asymptotically to zero. The axial variation 01 
icings for Fr = 8 follows the same trend (Fig. 7(b)). 
The magnitude of the local heat transfer rates are, 

however. larger for Pr = 8 as the thermal boundary 
layer is thinner. 

The total heat transfer rate, Q, from the surface of 

the protrusion can be obtained by integrating the iocal 
heat transfer rate. For unifo~ wall temperature 
boundary conditions. it can be expressed as 

where 

Qr= ’ 
s 

JG,(x,)dx,. (48) 
-I 

The values of y, 2, and p for Pr = 0.7 and 8 are given 
in Table 1. $2, is plotted as a function of the hump 
height h in Fig. 8. It is seen that as h increases, Q, 
increases to a maximum around II = 1.5 and then 
decreases. This may be explained by referring to the 

local wall heat flux distribution (Figs. 6(a) and (b)). 
As the height of the protrusion is increased, the local 
heat transfer rates increase on the windward side of 
the hump and decrease on the leeward side. For pro- 
trusion of heights h < 1.5, the net effect is an enhance- 

Table 1. Coefficients for heat transfer rate 

Pr ; A /I 

0.7 0.3328 0.6789 -0.3532 
8.0 0.0601 0.4387 -0.7752 
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FIG. 8. Total heat transfer rate from surface of protrusion 
for uniform wall temperature boundary condition. 
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FIG. 9. Total heat transfer rate from surface of protrusion 
for discontinuous wall temperature boundary condition. 

ment in the total heat transfer rate. For humps of 
larger height, the adverse pressure gradient induced 
on the leeward side slows down the flow considerably, 
and as a result, the heat transfer rates decrease. The 
fluid inside the separation bubble moves very slowly. 
Heat transfer in this almost stagnant region is mainly 
by conduction. L.ocally, the separated region acts like 
an insulating layer and the heat transfer rates are 
reduced. 

The total heat transfer rate from the surface of 
the protrusion for the discontinuous wall temperature 
boundary conditions may be expressed as 

Q _____=:C-3:‘y*!‘;1-‘:7(K-1)QO+..., (49j 
ww--x1 

where 

Q, = o2 Wdt) dt. 
I 

(50) 

Figure 9 shows the variation of QO with hump height 
h. As in the case of the uniform wall temperature 
boundary condition, QO increases initially with h and 
then decreases. For Pr = 8, Q. reaches a local mini- 

mum around h = 2.25 and then increases again. This 
increase in the heat transfer rate may be attributed to 
the mixing of cold fluid with hot fluid induced by the 
recirculation of fluid in the separation bubble. Since 
the plate beyond the trailing edge of the protrusion is 
cooler than the surface of the protrusion, the reverse 
flow in the separated region brings cooler fluid 
towards the relatively hotter surface of the protrusion, 
thereby enhancing the heat transfer rate. 

It is worth noting that while the constants 11, i and 
,U used in equations (47) and (49) for calculating the 
total heat transfer rate from the surface of the pro- 
trusion depend on the upstream flat-plate boundary 
layer solution, the values QO and Q, presented in Figs. 
8 and 9 do not depend on the flat-plate boundary 
layer solution. Thus, equations (47) and (49) may 
be used to predict the heat transfer rate from the 
protrusion for any jet-like boundary layer flow if the 
values of 7, I and /C are known. 
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CONVECTION NATL’RELLC AUTOUR D’UNE PETlTE EXCROISSANCE SlJR UNf* 
PLAQIJE VEKTlCALE 

R&urn&On considtre la convection naturclic au voisinagc d’une petite excroissancc dam la con&e limitc 
d’une plaque plane verticale. Des excroissanccs de hauteur _ Ls” ’ et de longueur - LI:” ‘. oi i: = (;r ' '. 

sent analystes dans le cadre de la theorie du double pont. Les bquations du pont infkrieur sont rCsolues 
numtriquement par une rnt-thodc hybride spectrale aux diff6rences fin&. Les densit& de flux thermiques 
sont dttcrmin&es pour deux conditions aux limites thermiques. Dans le premier cas, l’excroissance est 
maintcnuc d la m&me temperature qur la plaque alors quc clans le second cas I’excroissance est $ une 
temp~r~lture plus 6lcvir que ccllc dc la plaque. L’effct de la st-paration de la couchc limite sur le transfert 

thermiyue cst 6tudiS. 

NATiiRLlCHE KONVEKTION IN DER UMGEBUNG EINES KLEINEN VORSPRUNGS AN 
EINER SENKRECHTEN PLATTE 

~usammenf~sun~-3etr~~htet wird die natiiriiche Konvektion in der Umgebung eines kleinen Vorsprungs, 
der in die Grenzschicht einer senkrechten Platte eingebettet ist. Vorspriinge der Hijhe 12’,’ und der Lange 
Li;“’ mit t; = GF “’ werden mit Hill? der Zweischicht-Theorie untersucht. Die Gleichungen fi.ir die untere 
Schicht werden numerisch mit Hilfe einer hybriden spektralen Finite-Differenzen-Methode untersucht. Die 
Wgrmestriime werden fiir zwei thermische Randbedingungen bestimmt. Im ersten Fall wird der Vorsprung 
auf glcicher Temperatur wie die Platte gehalten, wghrend im zweiten Fall die Temperatur des Vorsprungs 
hiiher liegt als diejenige dcr Platte. Die Auswirkung einer ~renzscllichtab~~sun~ auf den W~rmestrom wird 

untersucht. 

ECTECTBEHHAR KOHBEKI@fIt BljJIlMJM HEIjOJIbBIOI-0 BbICTYIIA HA 
BEPTWKAJIbHOfi I’IJIACTHHE 

A~OTa~~~~~~eT~K eCXCT8eHHaK KOHBeK~K B ~OrpaHn~HO~ CJIOe B6JlH3E He6onbmoro BblCTyIia 

Ha BepTZiKajlbHOii KIJiOCKOii IUGiCTUHe. i%Ct&iTp&il3~~TCX BbICTynbI BbICOTOk -kg" U liJI%iHOii -LE6", 

me z=Gr- . ‘I4 YpWKXiIi~ ~JJIUOTCX ‘iEiCJlWlH0 C MClTOJ-Ib30BaHBeM rli6pEiAHOrO CIIeKTOpa,IbHOrO 

KOHVIHO-Pa3HOCTHOTO MeTOAa. O~,WW3EOTCK CKOPOCTU T‘XUlOne~HOCa &lIX TennOBbIX I.pUWEIbIX 

ycnosaii n6yx wiaoB. B nepeoM cnyrae TehmepaTypa sblnyna noasepxweaeTca paBHoii TeMnepaType 
ElJIaCTHHbI,BO slO~OMOH~n~BbIul~eTT~Mne~aTy~y~~cT~HbI.~n~~e~~eTCKB~~RH~eOT~b~B~nO~~~- 

~Iir~ofoc~IoKHacKopocrbTennonepeHoca. 


